CATALYSIS OF THE DIELS-ALDER REACTION IN THE PRESENCE OF CLAYS

Pierre Laszlo¤ and Jean Lucchetti Institut de Chimie Organique et de Biochimie Université de Liège Sart-Tilman par 4000 Liège, Belgium

<u>Abstract</u>: Fe^{III}-doped K10 montmorillonite combined with $4-\underline{t}$ -butylphenol (10 mol %) is a potent catalytic system for unactivated dienophiles.

The search for the best reaction conditions to make the Diels-Alder reaction fast and stereoselective has recently led to major improvements, on a par with the practical synthetic importance of this choice method for ring formation. Lewis acids can activate dienophiles having an oxygen function¹. Breslow et al.², followed by Grieco et al.³ have pioneered use of water as solvent: the attendant accelerations and increased stereoselectivities are often considerable. Bauld et al.⁴ have shown dramatic accelerations of otherwise sluggish reactions between unactivated hydrocarbon reactants using an $Ar_3N^{\dagger}.SbCl_6^{\dagger}$ catalyst.

In the context of our on-going design of organic reactions using clays $^{5-7}$, we present here our first results on Diels-Alder reactions much improved by the presence of a clay. Our rationale, by analogy with the use of the extremely stable tris (\underline{p} -bromophenyl) aminium radical cation 4 , exploits the propensity of aromatics (phenols especially) to generate radical cations 8 when adsorbed 9 on clay surfaces. We have been able thus to develop an efficient and inexpensive catalytic system for the Diels-Alder reaction, when the dienophile lacks reactivity.

For instance, 1,3-cyclohexadiene $\frac{1}{2}$ placed in the joint presence of an acidic montmorillonite (K10), doped with Fe^{III 10}, and of 4-t-butylphenol (10 mole %) in dichloromethane at 0°C gives cycloadduct $\frac{1}{2}$ with 77% isolated yield in less than 1 h. The presence of the phenol is important (compare entries 2 and 3 in Scheme 1).

	conditions	isolated yield (%)	endo/exo
(a)	200°C, 20 h	30 11	4 : 1
(b) l	<10-Fe ^{III} ,СН ₂ С1 ₂ , 0°С, 1 h	49	4 : 1
(c) H	K10-Fe ^{III} , 4- <u>t</u> -butylphenol 10	% ,	4 : 1
		SCHEME 1	

Of the various montmorillonites we have tested : several natural clays, K10, K10- Zn^{II} , K10- Co^{II} , K10- Al^{III} , K10- Fe^{III} , the latter has proven to be superior.

We have applied successfully reaction conditions (c) to other cycloadditions, such as with 2,4-dimethyl-1,3-pentadiene $\frac{3}{2}$, and with 2,5-dimethyl-2,4-hexadiene $\frac{4}{2}$ added to $\frac{1}{2}$ (Scheme 2).

$$\frac{3}{2}$$

$$\frac{(c)}{}$$

$$\frac{36\%}{N/x} = 4:3$$

SCHEME 2

Encouraged by these extremely promising results, we are now exploring the full scope and possible limitations of the Diels-Alder reaction in the presence of clays.

ACKNOWLEDGMENTS

We thank Professor R.C. Cookson (Southampton) for a useful discussion and Programmation de la Politique Scientifique (Brussels) for support (Action Concertée 82/87-34).

REFERENCES

- 1.a. P. Yates, P. Eaton, J. Am. Chem. Soc., 82, 4436 (1960).
 - b. J. Sauer, J. Kredel, <u>Tetrahedron Letters</u>, <u>7</u>, 731 (1966).
 - c. M. Bednarski, S. Danishefsky, J. Am. Chem. Soc., 105, 3716 (1983) and cited references.
 - d. W. Oppolzer, C. Chapuis, Tetrahedron Letters, 24, 4665 (1983) and cited references.
- 2.a. D.C. Rideout, R. Breslow, <u>J. Am. Chem. Soc.</u>, <u>102</u>, 7816 (1980).

- b. R. Breslow, U. Maitra, D. Rideout, Tetrahedron Letters, 24, 1901 (1983).
- 3. P.A. Grieco, P. Garner, K. Yoshida, J.C. Huffman, <u>Tetrahedron Letters</u>, <u>24</u>, 3807 (1983) and cited references.
- 4.a. D.J. Bellville, D.D. Wirth, N.L. Bauld, J. Am. Chem. Soc., 103, 718 (1981).
 - b. D.J. Bellville, N.L. Bauld, J. Am. Chem. Soc., 104, 2665 (1982).
- 5.a. A. Cornélis, P. Laszlo, Synthesis, 849 (1980).
 - b. A. Cornélis, P. Laszlo, Synthesis, 162 (1982).
 - c. A. Cornélis, P.Y. Herzé, P. Laszlo, Tetrahedron Letters, 23, 5035 (1982).
- 6. A. Cornélis, N. Depaye, A. Gerstmans, P. Laszlo, Tetrahedron Letters, 24, 3103 (1983).
- 7.a. A. Cornélis, P. Laszlo, P. Pennetreau, J. Org. Chem., 48, 4771 (1983).
 - b. A. Cornélis, P. Laszlo, P. Pennetreau, Clay Minerals, 18, 432 (1983).
- 8. P.J. Isaacson, B.L. Sawhney, Clay Minerals, 18, 253 (1983).
- 9.a. T.J. Pinnavaia, ACS Symposium Series, 192, 242 (1982) and references cited therein.
 - b. B.K.G. Theng in <u>Developments in Sedimentology</u>, no. 35, Intern. Clay Conf. 1981, Van Olphen and Veniale, eds., Elsevier (1982) and cited references.
- 10. The K10 bentonite (Süd-Chemie) is exchanged with Fe³⁺ ions according to published procedures: see for instance D.T.B. Tennakon, J.M. Thomas, M.J. Tricker, and J.D. Williams, J. Chem. Soc. Dalton Trans., 2207 (1974).
- 11. D. Valentine, N.J.J. Turro, G.S. Hammond, <u>J. Am. Chem. Soc.</u>, <u>86</u>, 5202 (1964).

(Received in France 11 February 1984)